
MAGNESIUM ALLOY DEVELOPMENT

Science within constraints

Mihriban O. Pekguleryuz McGill University

Magnesium alloy development challenges the scientist & engineer 360°

WHAT IS REQUIRED?

Mg ALLOY REQUIREMENTS IN AUTOMOTIVE APPLICATIONS

CURRENT USE: INTERIOR COMPONENTS

e.g.Instrument Panel,

- steering wheel - Stiffness, high ductility
- Energy absorption

AM alloys

MID-TO-LONG-TERM

BODY

e.g Inner door panel, pillar structures

- Wrought products (formability)
- Structural casting alloys (ductility) Requires new alloys and processes

CHASSIS

eg. Wheel, suspension arm

- Strength
- High ductility, fatigue
- Corrosion resistance
 - **Requires new alloys**

SHORT TERM : POWERTRAIN

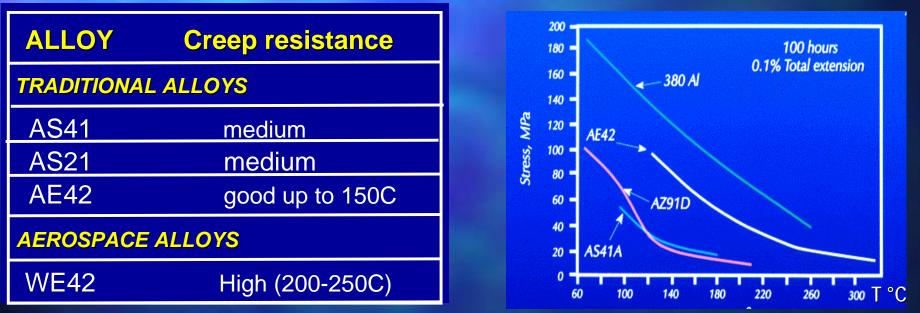
- e.. Transmission case, engine parts
- Creep resistance (150-200C)
- Yield strength
- Corrosion resistance
- Mg-AI-RE & Mg-AI-Si Requires new alloys

ALLOY TYPES NEEDED IN THE SHORT-TO-MID-TERM

CASTING ALLOYS 1990s-o-present - Creep resistant (175 C or above) - Improved castability (thin-walled) New challenges **WROUGHT ALLOYS** - improved formability, rollability, workability at room temperature - corrosion resistance - low cost processes

BACKGROUND

1990s: potential use of Mg in the powertrain North America: oil-pan, transmission case Europe: engine block and transmission case


L Requirements : Creep-resistance and tensile yield strength at and above 150°C, castability and others....

DEVELOPMENT OF Mg CREEP RESISTANT CASTING ALLOYS

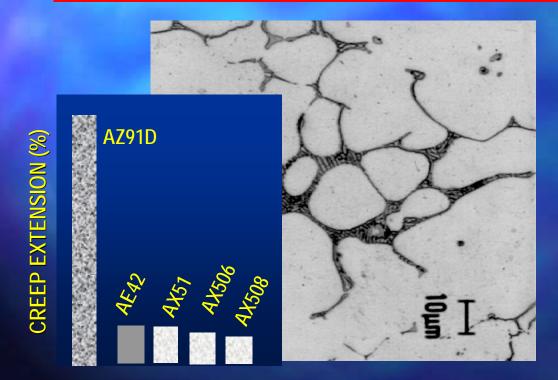
BACKGROUND

- Mg alloys have been traditional considered for die-casting (HPDC)
- Conventional alloys (Mg-AI, Mg-AI-Zn) HPDC alloys lose creep resistance above 120C.
- Traditional creep resistant alloys of Mg (HPDC) perform between 120-150C.
- Aerospace alloys (WE42): not die-castable; expensive

1990s to 2003: alloy development activities in North America, Europe, Israel, Australia, China, Japan

COMMERCIAL AND NEW Mg CREEP RESISTANT ALLOYS (HPDC)

ALLOY	DESIGNATION	INVENTOR	STATUS / COMMENTS
Mg-Al-Si	AS41 (Mg-4AI-1Si)	VW	Commercial
	AS21 (Mg-2AI-1Si)		
Mg-AI-Si (RE)	AS21x	Hydro Mag.	PATENTED
Mg-AI-RE	AE42 (Mg-4AI-2 RE)	Dow	Commercial
Mg-Al-Ca	AX51 {Mg-5AI-(.28)Ca}	ITM	WO96/25529 (1995), PD*
Mg-AI-RE-Ca	AEX	Nissan-UBE	EP 0799901 A1 (1997) NK**
	ACM522(Mg-5AI-2RE-2Ca)	Honda	EP 0791 662A1 (NK**)
Mg-RE-Ca (Mn)	EX {Mg-(2-5)RE-(0-1)Ca}	MEL	WO96/24701 (NK**)
Mg-Zn-Al-Ca	ZAX850	IMRA	US 5855697 (1999)
Mg-AI-RE-Ca (Sr)	MRI 153, MRI 230D	DSM-VW	US 6139651 (2000)
Mg-Al-Sr	AJ {Mg-(2-9)Al-(.5-7)Sr}	Noranda	US 6322644 (2001)
Mg-Al-Ca-Sr	AXJ {Mg-5AI-(2-3)Ca-0.07Sr	GM	US 6264763 (2001)
Mg-AI-Sr-Ca	AJX {Mg-(2-9)Al-(.26)Sr-(.153Ca)	Noranda	US 6342180 (2002)


* PD: public domain

** NK: status not known

Mg-Al-Ca Alloys By JTM (INTERMAG)-1995-96

DATE OF APPLICATION / ORIGINATOR	COMPOSITION (wt%)					CLAIMS	
	AI	Zn	Mn	RE	Са	Si	CLAIMS
1996 - ITM Inc	2 - 6				0.1-0.8		Alloys with composition to give Al ₂ Ca precipitation good creep resistance (WO96/25529)

Source: J.F. King, "Development of Magnesium Diecasting Alloys," Magnesium Alloys and their Applications, B.L. Mordike, K.U. Kainer, Eds, Proc. Vol. Sponsored by Volkswagen......April 1998, p. 43

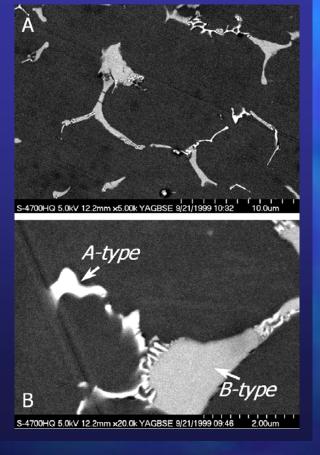
CREEP EXTENSION (%) 150°C, 35 MPA FOR 200 HOURS

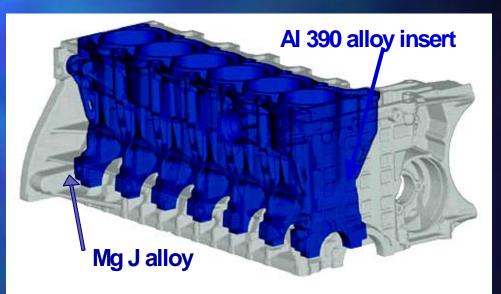
ALLOYS				
AX506	AX508	AX51	AZ91D	AE42
0.31	0.26	0.33	2.54	0.33

Very good properties but Castability issues

Mg-Al-Sr Alloys (Noranda)

2-10% AI, 1.2-7%Sr One of the compositions commercialized in automotive engine block

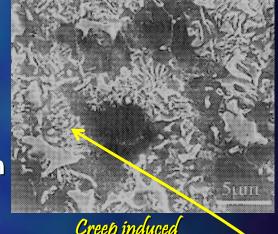

AJ52x AJ62x

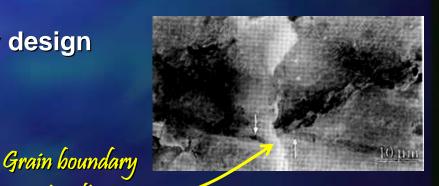

 α -Mg and

Type A

Type B

intermetallics


BMW hybrid engine block


tuo llet official out

- Creep involves thermally activated recovery processes: dislocation motion, diffusion)
- -To be prominent above 0.3 T_m of Mg and of the solute
- Mg alloys especially diecast alloys have different mechanisms at room to moderate temperatures and moderate stress regimes:

Stress and/or thermally induced precipitation from the supersaturated primary phase (e.g. $Mg_{17}AI_{12}$), or through decomposition of intermetallics (in AE alloys) which facilitates grain boundary migration

- Hence we need to prevent this type of pptn
- Use metallurgically stable precipitates in alloy design
- For higher temperatures: more strategies and alloy phase diagrams need to be developed.

COMMERCIAL USE OF CREEP RESISTANT ALLOYS IN AUTOMOTIVE APPLICATIONS

1970s VW use of AS (Mg-Al-Si) alloys

1990s: Use of the Honda alloy (Mg-Al-RE-Ca) in oil-pan

Recent:

- Use of AS31 in transmission case

- Use of DSM (Mg-AI-Ca-Sr-RE) alloys in VW

- Use of the AJ (Mg-AI-Sr) alloys in the BMW engine block (in all 330 and 630 series coupe models)

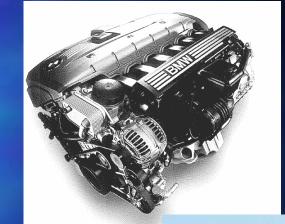
Example of Alloy development project that led to commercialization AJ alloy for automotive powertrain

Importance of prior knowledge: Exposure to industry problems, issues (research inst.)

Grasp of Performance requirements

- Creep resistance (tensile & compressive) up to 175°C (min creep rate)
- Bolt-load retention up to 175°C (50% min)
- Metallurgical / thermal stability
- Tensile yield strength up to 175°C (100 MPa)
- Fatigue resistance (fatigue limit at 175 ° C : 45 MPa min)
- Ultimate tensile strength up to 175°C (130 MPa)
- Salt-spray corrosion resistance (0.1-0.25 mg/cm²/day)
- Elongation (min 3% at room temperature)
- Acceptable diecastability (comparable to AM or AE)
- Acceptable cost (5-10 ¢over alloy prices)
- Availability of raw materials
- Alloy production (compatibility with plant processes)
- Melt handling (oxidation, sludge formation)
- Recyclability

Interdisciplinary team


Alloy development and patenting: 1 year (creep resistance above 150C Stable AI-Sr intermetallics, control of AI/Sr ratio prevents Mg₁₇AI₁₂ pptn)

Evaluation & casting process development, recycling, reliability, supplier certification, carried out jointly with the alloy company and the automotive company (internal foundry) :

Commercial production:

2 years

4th year

Important to maintain expertise in the form of institutes, clusters

Important to maintain positive perspective on challenges

What did we learn as alloy developers?

-If we want alloy to be commercialized in the short-to-midterm

- We need to have a full grasp of the performance requirements, industry constraints, Creep behavior of Mg before we start alloy development projects
- Build a multivalent team (mechanical, materials science and engineering, applications, production, manufacture, supply)
- Materials scientist should sit very close to the industry, listen to them continuously
- Once you have done that, do not listen to the traditional experts, follow your own train of thought. Be creative...

If we want to contribute to the knowledge base

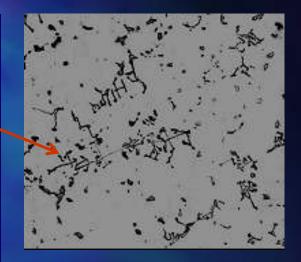
- Study creep behavior and creep mechanisms, alloy phases, equilibria

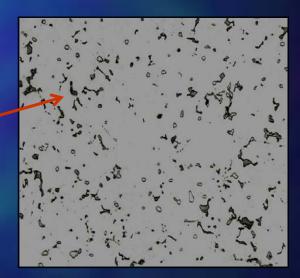
1) COMMERCIAL AEROSPACE ALLOYS

Y, R.E. (Ce, Nd), Ag, Cu, Zn CONTAINING ALLOYS
WE43, WE54, QE22, ZE41, ZC63, RZ5, ZRE1

2) NEW DEVELOPMENT FOR AUTOMOTIVE

MEL and DSM ALLOYS NEW Yttrium CONTAINING ALLOYS Silicon CONTAINING EXPERIMENTAL ALLOYS


MAGNESIUM GRAVITY CASTING ALLOYS


ALLOY	DESIGNATION	COMPANY / RESEARCHER	STATUS / COMMENTS
Mg-Y-RE	WE43, WE54	MEL	Commercial
Mg-Gd-Y-Zr	-	Prof. Kamado	Experimental
Mg-Y-Zn-Zr	_	Prof. Mordike	Experimental
Mg-Y-Zn-Nd-Zr	-	Prof. Mordike	Experimental
Mg-Zn-RE (Zr)	ZE41, EZ33, ZE62	MEL	Commercial
	MEZ (2.5RE, 0.5Zn)	MEL	US 6193817 (2001)
Mg-Zn-Cu (Mn)	ZC63	MEL	
Mg-Si (Al,Ca, RE) hypereutectic		S. Beer et al	Experimental
Mg-Al-Si-(Ca)	ASX410	M.Pekguleryuz et al	Experimental
	MRI 201S, MRI 201S	DSM-VW	

MODIFICATION OF MG-AI-SI ALLOYS FOR GRAVITY CAST APPLICATIONS

MODIFICATION OF AS41 ALLOY WITH TRACE CALCIUM ADDITIONS (ITM, 1993)

- CHINESE SCRIPT MORPHOLOGY OF THE MG₂SI PHASE LEADS TOLOW DUCTILITY WHEN GRAVITY CAST
- WHEN DIECAST ALLOYS, THE HIGH FREEZING RATE REFINES THE CHINESE SCRIPT IMPROVING THE DUCTILITY
- 0.05-0.1WT %Ca ADDITIONS TO GRAVITY CAST AS41 . REFINES THE CHINESE SCRIPT AND IMPROVES THE DUCTILITY

NEW CHALLENGE : DEVELOPMENT OF NEW Mg CASTING ALLOYS FOR THIN-WALLED STRUCTURAL CASTINGS

Alloy compositions should lead to

 improved mold/die filling (low surface tension, low viscosity, appropriate freezing range, low liquidus)

- Improved ductility

Challenges:

- Fluidity
- Melt cleanliness
- As-cast microstructure
- Hot-tearing
- Thermal properties

NEW CHALLENGE : DEVELOPMENT OF NEW WROUGHT Mg ALLOYS Alloy compositions should lead to

- formability, workability at moderate temperatures below 400C
- strength and formability at room temperature
- corrosion resistance
- mass production at low cost
- viable thermomechanical processing for sheet
- viable forming technology for extrusions
- viable joining

Challenges:

- HCP crystal structure of Mg
- High critical resolved shear stress of non-basal slip systems below 250C
- Lack of in depth understanding of deformation mechanisms in Mg alloys
- Lack of industry-research cooperation and international programs in this field
- Only one or two viable sheet alloys (AZ31)
- Moderate corrosion resistance of wrought alloys
- High cost of sheet production

CURRENT : Mg ALLOY DEVELOPMENT RESEARCH IN CANADA

MCGILL UNIVERSITY

- CRD ON Mg SHEET (Prof. S. Yue)
- CRD ON MULTICOMPONENT ALLOY SYSTEMS (Prof. R. Gauvin)
- INDUSTRIAL RESEARCH CHAIR IN AUTOMOTIVE LIGHT METALS AND ADVANCED Mg MATERIALS (Prof. M. Pekguleryuz) (wrought alloys, phase diagram studies)

ECOLE POLYTECHNIQUE DE MONTREAL - CRD ON ALLOY PHASE EQUILIBRIA (Prof. A. Pelton)

CONCORDIA UNIVERSITY -ALLOY PHASE EQUILIBRIA (Prof. M. Medraj)

CANMET - MTL -MG SHEET, ALLOY PHASES